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LETTERS TO THE EDITOR

COMMENTS ON ‘‘RESPONSE ERRORS OF NON-PROPORTIONALLY LIGHTLY
DAMPED STRUCTURES’’

S. M. S
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U.S.A.

(Received 15 July 1997)

In reference [1], the authors consider an n-degree-of-freedom linear system represented in
the modal co-ordinates by

q̈(t)+Cq̇(t)+V2q(t)=Bf(t), (1)

for all te 0, where q(t)$Rn is the vector of modal displacements, f(t)$R is the input
function, C=[cij ]$Rn× n is the modal damping matrix, V= diag[v1, v2, . . . , vn ] is the
matrix of natural frequencies, and the vector

b1

b2

B= ···
$ Rn, (2)

bn

describes the distribution of the applied input in the modal co-ordinates.
The authors decompose the matrix C as

C=Cd +Co , (3)

where Cd = diag[c11, c22, . . . , cnn ] and Co =[coij ]$Rn× n is a matrix with zero diagonal
elements and coij = cij for all i, j=1, 2, . . . , n and i$ j. The matrix Cd is written as

Cd = diag[2j1v1, 2j2v2, . . . , 2jnvn ], (4)

where ji is the ith modal damping ratio, which is positive for all i=1, 2, . . . , n.
The authors make two assumptions regarding the natural frequencies and the modal

damping ratios:

(A1) The modal frequencies v1, v2, . . . , vn are not clustered.
(A2) The modal damping ratio ji�1 for all i=1, 2, . . . , n.

As is customary, the authors neglect the off-diagonal elements of C in equation (1) to
obtain

q̈p (t)+Cdq̇p (t)+V2qp (t)=Bf(t), (5)

for all te 0, where qp (t)$Rn. The system (5) is a set of n decoupled second order systems,
which can be readily solved for qp (·). The vector qp (·) furnishes an approximate solution
for q(·) in equation (1). The question is: Under what conditions is qp (·) a reasonably
accurate approximation of q(·)? More precisely, define the error between the ith
components of the vectors q(·) and qp (·) by

ei (t)Mqi (t)− qpi (t)$Rn, (6)
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for all te 0. Under what conditions is ei (·) small for all i=1, 2, . . . , n? The authors claim
that if assumptions (A1) and (A2) hold, then q(·) and qp (·) are close to each other. This
claim is not true, as we will show in the following.

First, let us briefly review the argument given by the authors. In order to justify their
claim, the authors introduce a scalar quantity, called the modal coupling, as

ki,kM
=bi =/=bk =

(ji /jk )((vi /vk )2 + [(vi /vk )2 −1]2/4j2
i )1/2 , (7)

for all i, k=1, 2, . . . , n and i$ k, where bi and ji are, respectively, the ith element of the
vector B in equation (2) and the ith modal damping ratio in equation (4). The authors
define two more quantities as

kiM max
1E kE n

k$ i

(ki,k ), si = s
n

j=1

=coij =, (8a, b)

for all i=1, 2, . . . , n, where coij , j=1, 2, . . . , n, are the off-diagonal elements of the ith
row of the matrix C. Finally, the authors define the factor

siMkisi /2jivi , (9)

for all i=1, 2, . . . , n. Having the factor si defined, the authors erroneously show that if
assumptions (A1) and (A2) hold, then

>ei>2

>qi>2
E si�1, (10)

for all i=1, 2, . . . , n, where

>qi>2Mg
a

0

=qi (t)=2 dt, (11)

is the L2-norm of the time function t � qi (t). From inequality (10), the authors conclude
that the error in the approximate solution is small and hence ‘‘the off-diagonal elements
of the damping matrix can be neglected regardless of their values’’.

The fact is that inequality (10) does not necessarily hold: the factor si can possibly be
close to or even larger than 1 for some i=1, 2, . . . , n. Recall that si is given by equation
(9). In this equation, it can be true that si /2jivi 1 1 for all i=1, 2, . . . , n, however, ki

defined originally in equation (8a) is not necessarily much less than 1. The authors reach
the erroneous conclusion that ki,k in equation (7) and ki are much smaller than 1 for all
i, k=1, 2, . . . , n and i$ k, because they consider ji /jk =1 and =bi =/=bk ==1 for all
i, k=1, 2, . . . , n and i$ k. It is true that if assumptions (A1) and (A2) hold and if
ji /jk =1 and =bi =/=bk ==1 for all i, k=1, 2, . . . , n and i$ k, then ki,k�1 and ki�1 for all
i, k=1, 2, . . . , n and i$ k. However, there is no reason to believe that =bi =/=bk ==1 for
all i, k=1, 2, . . . , n and i$ k, because the magnitudes of the elements of the vector B
in equation (2) are not necessarily close or equal to each other. Since bi can have any
magnitude for different i=1, 2, . . . , n, it is possible to have ki,k and ki close to or even
larger than 1 for some i, k=1, 2, . . . , n and i$ k. Thus, si is not necessarily much smaller
than 1 for all i=1, 2, . . . , n and the approximation error may not be small. We will give
an example to show that ki and si are large for some i=1, 2, . . . , n, and so is the
approximation error.

The authors make a mistake in their Examples 1 and 2, when they use inequality (10)
for functions that do not belong to the space L2(R+). In these examples, they apply step
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inputs to two systems. Due to the linearity of the systems and the positive definiteness of
their modal damping matrices, the response qi (t) converges to a constant value q*i as t:a
for all i=1, 2, . . . , n. That is, the steady state responses are step functions. Therefore,
qi (L2(R+) for all i=1, 2, . . . , n, the norm >qi>2 is meaningless (>qi>2 =a), and inequality
(10) is not applicable. The use of the L2-norm of time functions limits the application of
inequality (10) to only those systems the responses of which belong to L2(R+). Thus, for
instance, when the system responses are sinusoidal or step functions, inequality (10) is not
applicable.

It should be pointed out that the modal coupling factor ki,k defined in equation (7) fails
to incorporate the frequency content of the applied input for all i, k=1, 2, . . . , n and
i$ k. The usefulness of the modal coupling factors in providing a reasonable estimate for
the approximation error is questionable, because they lack information regarding the input
frequency. It is known that the input frequency can have a significant effect on the size
of the approximation error, when it is close to one of the natural frequencies of the system
[2]. We will see the significance of the input frequency in our example.

Now, we give an example of a system for which assumptions (A1) and (A2) hold.
However, the approximate decoupling of this system by neglecting the off-diagonal
elements of the modal damping matrix leads to inaccurate approximate solutions.

Consider a system represented in the modal co-ordinates by

&q̈1(t)
q̈2(t)
q̈3(t)'+ & 0·04

−0·02
−0·02

−0·02
0·4

−0·08

−0·02
−0·08

0·6 '&q̇1(t)
q̇2(t)
q̇3(t)'+ &1 0 0

0 25 0
0 0 100'&q1(t)

q2(t)
q3(t)'= &10

1
5 ' sin t, (12)

for all te 0. For this system,

v1 =1, v2 =5, v3 =10, (13a)

j1 =0·02, j2 =0·04, j3 =0·03, (13b)

b1 =10, b2 =1, b3 =5. (13c)

Clearly, assumptions (A1) and (A2) hold for the system (12). Therefore, according to the
authors ki�1 and si�1 for all i=1, 2, 3 and ‘‘the off-diagonal elements of the damping
matrix can be neglected regardless of their values’’. We show that these conclusions are
not true.

We now compute ki and si for i=1, 2, 3. From equation (7), we obtain

k1,2 =0·8333, k1,3 =0·1212, (14a)

k2,1 =0·00016, k2,3 =0·01598, (14b)

k3,1 =0·0002, k3,2 =0·1332. (14c)

Thus, from equations (8) and (9), we obtain

k1 =0·8333, k2 =0·01598, k3 =0·1332, (15a)

s1 =0·8333, s2 =0·0039, s3 =0·0222. (15b)

Obviously, s1 is not much smaller than 1. This is due to the fact that b1, b2 and b3 have
different magnitudes.

We next study the exact and approximate solutions of the system (12) as well as the
approximation error. The approximate solution is the solution of the following decoupled
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system which is obtained by neglecting the off-diagonal elements of the modal damping
matrix in equation (12):

&q̈p1(t)
q̈p2(t)
q̈p3(t)'+ diag[0·04, 0·4, 0·6]&q̇p1(t)

q̇p2(t)
q̇p3(t)'+ diag[1, 25, 100]&qp1(t)

qp2(t)
qp3(t)'= &10

1
5 ' sin t, (16)

for all te 0. We solved the systems (12) and (16) numerically for the vectors
[q1(·) q2(·) q3(·)]T and [qp1(·) qp2(·) qp3(·)]

T, respectively. In Figures 1, 2 and 3, we have
plotted t � qi (t), t � qpi (t) and t � ei (t)= qi (t)− qpi (t), respectively, for i=1, 2, 3. For
the second mode, we have plotted the exact and approximate steady state solutions and
their difference in Figure 4, and have denoted them, respectively, by t � qs

2(t), t � qs
p2(t)

and t � es
2(t).

We note that due to the linearity of the systems (12) and (16), the exact and approximate
steady state solutions are sinusoidal functions of time. Thus, qi (L2(R+) for all i=1, 2, 3
and >qi>2 cannot be computed. Therefore, inequality (10) is not applicable. We also note
that the approximation error e2(·) is quite large. Hence, the authors’ claim that ‘‘the
off-diagonal terms rarely cause a significant approximation error when the damping is
small’’ is not true. The off-diagonal elements of the modal damping matrix do cause a
significant error. Roughly speaking, the reason for the large e2(·) is as follows. Note that
the damping ratio for the first mode is small, the frequency of the applied input is equal
to the natural frequency v1 =1, and the amplitude of the input to the first mode is large.
Therefore, the first mode is in resonance and the steady state solution for this mode has
the large amplitude of 250, as is evident in Figure 1. Due to this large amplitude, any
coupling of the first mode to the other modes through an off-diagonal element of the modal
matrix can have a significant effect on the other modes. Thus, if the off-diagonal elements
of the modal damping matrix are neglected, the significant effect of the first mode on the

Figure 1. The exact and approximate solutions for the first mode and the approximation error denoted by
q1(·), qp1(·) and e1(·), respectively. The error e1(·) is almost zero.
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Figure 2. The exact and approximate solutions for the second mode and the approximation error denoted by
q2(·), qp2(·) and e2(·), respectively. The error e2(·) is quite large.

other modes will be eliminated and, consequently, there will be a large error between the
exact and approximate solutions. Note also that our example shows the important role
of the input frequency in causing resonance in one of the modes and a large approximation
error.

Figure 3. The exact and approximate solutions for the third mode and the approximation error denoted by
q3(·), qp3(·) and e3(·), respectively. The error e3(·) is large.
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Figure 4. The exact and approximate steady state solutions for the second mode and their difference denoted
by qs

2(·), qs
p2(·) and es

2(·), respectively.

In a recent paper [3], it is shown that the size of the approximation error in the modal
(also called normalized) co-ordinates does not provide a definitive measure of the size of
the error in the physical co-ordinates, where the physical variables of interest are measured.
For instance, it is possible to have small errors in the modal co-ordinates, but have large
errors in the physical co-ordinates. Therefore, it is futile to seek criteria that guarantee a
small approximation error in the modal co-ordinates. The modal analysis can certainly be
used to obtain useful information regarding the natural frequencies and the modes of
systems. However, using the modal matrix in order to transform the system to the modal
co-ordinates and to obtain an approximate solution for the system is not a good approach,
because the accuracy of the approximate solution in the physical co-ordinates remains
unknown.
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The authors wish to thank Dr Shahruz for his comments [1] on the authors’ letter [2], in
which he questioned: (1) that the assumptions of =bk =/=bi ==1 and =jK =/=ji ==1 lead to the
erroneous conclusions regarding the output error; (2) that the two-norm was mistakenly
used for the step response; and (3) that the error can exceed the output, as shown in the
example of [1].

Regarding the first question. In our letter [2] we did not explain that the assumption
=bk =/=bi ==1 denotes the worst case of equation (7). Indeed, consider =bk=/=bi =�1. In this case
the kth mode is excited lightly, and the kth error is negligible at the output. Similarly, the
ratio =jk =/=ji ==1 denotes the worst case in equation (7) of reference [2]. Certainly, for
=jk =/=ji =�1 the ith mode is excited lightly, and the ith error is negligible at the output.

In order to explain the second question, note that the two-norm was finite in our
example. We used the two-norm of the step response in a limited time segment, up to the
moment when the motion is stationary. In our case it was from 0 to 10 s in Example 1,
and from 0 to 50 s in Example 2, as in Figure 4 of reference [2].

Now we turn to the last question. The example of reference [1] shows that errors under
specific conditions are substantial. The magnitude of the error could be considered small
or large, depending on the signal it is compared to. In the discussed example, the frequency
of the harmonic excitation was equal to the first resonance frequency (of 1 rad/s).
Therefore the first mode response is dominant (of amplitude 250), while the responses of
the remaining modes are negligible (of amplitudes 0·25 and 0·1). The output as a
combination of all modal responses is dominated by the first mode response in the
example. The errors of the first mode, as well as the errors of the remaining modes, are
negligible when compared to the output (less than 0·1%).

Finally, the claim in reference [1] that ‘‘the error in modal co-ordinates does not provide
a definitive measure of size in the physical co-ordinates’’ is not true if the output error is
considered: output does not depend on a choice of co-ordinates.

In conclusion, we consider an output error as a measure of the system performance. We
thank Dr Shahruz for pointing out the inconsistencies in explaining the problem
assumptions and in conditions of norm computation.
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